Numeron juuri

On matematiikka , n- th juuri useita on luku b siten, että b n = a , jossa n on ei-nolla luonnollinen kokonaisluku .

Riippuen siitä, työskentelemmekö positiivisten reaalien joukossa, reaalien joukossa vai kompleksijoukossa , luvun n: nnen juuren määrä voi olla 0, 1, 2 tai n .

Positiiviselle reaaliluvulle a on olemassa ainutlaatuinen positiivinen reaaliluku b siten, että b n = a . Tämä todellinen kutsutaan n- nnen juuren ja (tai n- th pääasiallinen juuri of ) ja on merkitty n kanssa radikaali symboli ( ) tai 1 / n . Tunnetuin juuri on todellisen neliöjuuri . Tämä määritelmä yleistyy varten negatiivinen ja b negatiivinen edellyttäen, että n on pariton .  

Numeron juuren termiä ei pidä sekoittaa polynomin juuren termiin, joka osoittaa arvon (arvot) polynomin katoamiseen.

Todellisen juuren

Neliöjuuri

Minkä tahansa ehdottomasti positiivisen todellisen r : n osalta yhtälö x 2 = r myöntää kaksi vastakkaista todellista ratkaisua, ja kun r = 0, yhtälö x 2 = 0 myöntää ainoan ratkaisun 0.

Neliöjuuri on positiivinen reaaliluku r on määritelmän ainutlaatuinen positiivinen reaaliluku yhtälön x 2 = r tuntematon x .

On huomattava, että r .

Esimerkkejä

Neliöjuuri

Kuutio juuri mitään todellista r on ainutlaatuinen todellinen juuri yhtälö

tuntematon x .

On huomattava .

Esimerkki:

Racine n : n positiivinen reaaliluku

Tahansa nollasta luonnollinen kokonaisluku , kartta on bijektio päässä siitä ja sen vuoksi mikä tahansa positiivinen todellinen numero, yhtälö myöntää ainutlaatuinen ratkaisu .

N: s juuri (tai n: nnen juuren ), joka on positiivinen todellinen r ( r ≥ 0, n> 0 ) on ainutlaatuinen positiivinen reaaliluku yhtälön

tuntematon x .

On huomattava .

Huomaa, että n: s juuri ja on myös ainutlaatuinen positiivinen juuri polynomin .

Kun n on tasainen, yhtälö

tuntematon x

on kaksi ratkaisua, jotka ovat ja .

Kun n on pariton, yhtälö

tuntematon x

on vain yksi ratkaisu .

Racine n : n todellinen negatiivinen luku

Negatiivisten lukujen juurien käsittely ei ole yhdenmukaista. Esimerkiksi -1: llä ei ole todellista neliöjuuria, kuten kaikilla todellisilla , mutta -27: n kuutiojuuri on olemassa ja on yhtä suuri kuin -3.

Mille tahansa pariton luonnollinen luku , kartta on bijektio on yli joten mitään todellista määrää on täsmälleen yksi nnen juuren .

Millä tahansa parittomalla luonnollisella luvulla minkä tahansa reaaliluvun n. Juuret (tai -th juuret ) on yhtälön ainutlaatuinen todellinen ratkaisu

tuntematon .

Tästä seuraa, että negatiivisten reaalilukujen parittomien järjestysten juuret ovat negatiivisia.

Huomaa, että parittomilla luonnollisilla numeroilla ja mille tahansa reaaliluvulla meillä on

.

Tarve työskennellä negatiivisten numeroiden juurien kanssa on johtanut kompleksilukujen käyttöönottoon , mutta kompleksilukujen juurille on myös rajoituksia. Katso alempaa.

Juurien ominaisuudet

Juurien laskemista koskevat säännöt johtuvat voimien ominaisuuksista .

Tiukasti positiivisten lukujen osalta ja meillä on seuraavat laskentasäännöt:

Tapauksessa negatiivisia lukuja, nämä laskenta sääntöjä voidaan soveltaa vain, jos ja ovat parittomat. Monimutkaisten numeroiden tapauksessa niitä tulisi välttää.

Murtolukuinen eksponentti

Sarjassa tiukasti positiivinen reals, numero, joka, potenssiin n , antaa on huomattava . Ajatuksena on Kirjaa numero kuin teho , vaikka se tarkoittaa, että otetaan ei-integroitu eksponentti. Kyseessä on siis kysymys löytää eksponentin s sellainen, että . Käyttämällä tunnettuja operaatioita kokonaislukueksponenteissa, jotka yleistettäisiin ei-kokonaislukueksponentteihin, saataisiin , toisin sanoen pn = 1 ja .

Näin voimme merkitsevät neliöjuuri , tai , kuutio juuri , tai ja n- nnen juuren ja , tai .

Tämä eksponentin mahdollisten arvojen laajennus johtuu Newtonin ja Leibnizin työstä . Voimme jatkaa työtä tarkkailemalla sitä

ja tarkista, että tämä merkintä on yhteensopiva kokonaislukueksponenttien jo tunnettujen ominaisuuksien kanssa .

Newtonissa näemme murtolukijan esiintyvän ensimmäistä kertaa. Mutta Newton ja Leibniz eivät pysähdy siihen ja jopa esittävät itselleen kysymyksen työskennellä irrationaalisten eksponenttien kanssa kykenemättä antamaan heille merkitystä. Vasta vuosisadan kuluttua nämä merkinnät saivat täsmällisen merkityksen eksponenttifunktion toteuttamisen ja käännöksen avulla:

sillä todellinen on ehdottomasti positiivista.

Root toiminto n : nnen

Minkä tahansa nollasta poikkeavan luonnollisen kokonaisluvun kohdalla kartta on bijection välillä ℝ + - ℝ +, jonka vastavuoroinen kartta on n- edes juurifunktio . Sen vuoksi on mahdollista rakentaa sen graafinen esitys, käyttäen kuin tehon funktio , jonka symmetria on yhtälön linjan .

Huomaa, että tämä toiminto on jatkuva koko ajan ja siten, että y- akselin kanssa samanaikainen tangentti esiintyy alkupisteessä siten, että erottamaton 0- akselissa sekä akselin parabolinen haara ( Ox ).

Vastavuoroisen johdannaisen kaavat mahdollistavat sen toteamisen, että n- edellinen juurifunktio on erotettavissa aikavälillä ja että sen derivaatti on joko jälleen murtolukijan kanssa, mikä osoittaa, että kokonaislukujohdannaisen kaava toiminto yleistyy käänteisvoimaksi.

Koko sarjan kehitys

Radikaali tai juuri voidaan esittää Taylor-sarjalla kohdassa 1, joka saadaan yleistetystä binomikaavasta  : mihin tahansa reaalilukuun h siten, että | h | ≤ 1,

Todellakin, tämä tasa-arvo, a priori vain | h | <1, tosiasiallisesti varmistaa normaalin lähentymisen kohtaan [–1, 1], koska

Voimme huomata ( vrt. ”  Eisensteinin lause  ”), että kaikki n 2 k – 1 a k ovat kokonaislukuja ( tapauksessa n = 2 , nämä ovat katalaanilukuja C k –1 ).

Monimutkaisen juuret

Tahansa nollasta luonnollinen luku n , n : s juuri kompleksiluvun z on luku, joka nosti potenssiin n, antaa z , eli yhtälön

tuntematon x .

Kun z on muu kuin 0, on olemassa n eri n- th juuret ja z . Itse asiassa nollasta poikkeavan kompleksin z n: nten juuret ovat myös polynomin X n - z juuret , mikä todellakin myöntää n ratkaisua kompleksilukujoukossa d'Alembert-Gaussin lauseen mukaan .

Kaikki minkä tahansa numeron juuret, todelliset tai monimutkaiset, löytyvät yksinkertaisella algoritmilla . Numero on ensin kirjoitettava lomakkeeseen (katso Eulerin kaava ). Sitten kaikki n: nnet juuret saadaan:

varten , jossa on n- nnen pääasiallinen juuri of .

Positiiviset reaaliluvut

Kaikki monimutkaiset liuokset , eli n : nnen juuret ja , jossa on positiivinen reaaliluku, annetaan yksinkertaistettu yhtälö:

varten , jossa on n- nnen pääasiallinen juuri of .

Ykseyden juuret

Kun tällaista juurta kutsutaan juureksi - th-yksikkö , ja yksikön kaikki n: nnet juuret muodostuvat kompleksisen polynomin n- juuresta

Se on syklinen alaryhmä moduulin 1 kompleksien multiplikaatioryhmästä . Se muodostuu alkuaineista

Kutsumme ykseyden yhdeksättä primitiivistä juurta syklisen ryhmän mille tahansa generaattorille . Nämä primitiiviset juuret ovat elementtejä , joissa k on ensisijainen kanssa n . Niiden määrä on yhtä suuri kuin missä tarkoittaa Euler indicatrixia .

Radikaali resoluutio

Ludovico Ferrari osoitti, että neljännen asteen polynomien juuret , kuten toisen ja kolmannen asteen juuret , voidaan laskea radikaaleilla, toisin sanoen rajallisella määrällä alkuoperaatioita polynomin kertoimilla, mukaan lukien laskelmat juuret n : nnen . Tämä ei ole enää totta kvintisten yhtälöiden tai korkeamman asteen kohdalla, kuten Abel-Ruffini-lause totesi . Esimerkiksi yhtälön ratkaisuja ei voida ilmaista radikaaleina.

Ratkaise mikä tahansa n: n asteen yhtälö "numeerisesti" , katso juurihakualgoritmi .

Juuri typografiassa

In typografia , juuri koostuu kolmesta osasta: radikaali, indeksi ja juurrettava.

Huomautuksia ja viitteitä

  1. Michel Serfati, symbolinen vallankumous , luku XI, eksponentiaali Descartesin jälkeen.

Katso myös

Aiheeseen liittyvät artikkelit

Bibliografia